4th International Conference on Rehabilitation and Maintenance in Civil Engineering



# METHOD OF REMOVING SECONDARY COMPRESSION ON CLAY USING PRELOADING

## Ega Dhianty, S.T. Prof. Ir. Indrasurya B. Mochtar, M.Sc., Ph.D

Civil Engineering Faculty of Civil Engineering Environment and Geo Engineering Institut Teknologi Sepuluh Nopember, Indonesia 2018

Presented by : Ega Dhianty, S.T.

# INTRODUCTION



The Secondary Compression Index (C $\alpha$ ') is affected by the Effective Consolidation Stress (P'). The greater the Effective Consolidation Stress is, the greater the Secondary Compression Index will become

## MATERIALS AND RESEARCH METHODS

Table 1. Soil consistencies for soil that dominant of clay and silt, Mochtar (2012)

| Soil Consistencies | Undrained Shear Strength, Cu |                    |  |  |  |
|--------------------|------------------------------|--------------------|--|--|--|
|                    | kPa                          | ton/m <sup>2</sup> |  |  |  |
| Very Soft          | 0 - 12.5                     | 0 - 1.25           |  |  |  |
| Soft               | 12.5 - 25                    | 1.25 - 2.5         |  |  |  |
| Medium             | 25 - 50                      | 2.5 - 5            |  |  |  |
| Stiff              | 50 - 100                     | 5.0 - 10           |  |  |  |
| Very Stiff         | 100 - 200                    | 10 - 20            |  |  |  |
| Hard               | > 200                        | > 20.0             |  |  |  |

#### Table 2. Consistencies of tested soil samples

| Soil Consistencies | Undrained Shear Strength (Cu)<br>(kPa) |  |  |
|--------------------|----------------------------------------|--|--|
| Very Soft          | 6                                      |  |  |
| Soft               | 14.8                                   |  |  |
| Medium             | 36.5                                   |  |  |



Statistical Analysis with Regression Calculation of Soil Settlement

# **RESULTS AND DISCUSSION**

Empirical correlation of the secondary compression index as function of void ratio and the effective consolidation stress



Fig. 1. The relationship between the initial void ratio and  $C\alpha'/P'$ 



Fig. 2. The relationship between the void ratio at the end of primary consolidation and  $C\alpha'/P'$ 



Fig. 3. The relationship between the initial void ratio and the void ratio at the end of primary consolidation

Table 4. The correlation between the secondary compression index (Ca'), the void ratio (e), and the effective consolidation stress (P')

| Correlation                                                      | R     | Regress | ion    |
|------------------------------------------------------------------|-------|---------|--------|
| $C\alpha' = (0.0072 e_0 - 0.0067) P'$                            | 0.888 | Linear  | (Eq.1) |
| $C\alpha' = (0.0003 \text{ exp}^{1.6116 \text{ eo}}) \text{ P'}$ | 0.873 | Exponen | itial  |
| $C\alpha' = (0.0077 e_p - 0.006) P'$                             | 0.914 | Linear  | (Eq.2) |
| $C\alpha' = (0.0003 \text{ exp}^{1.8191 \text{ ep}}) \text{ P'}$ | 0.910 | Exponen | ntial  |

Empirical correlation of the secondary compression index as function of void ratio and the effective consolidation stress



Fig. 4. Comparison of empirical correlation value to data obtained from laboratory

|            | $\begin{array}{c} \textbf{B} = 40 \text{ m} \\ \hline \textbf{Final} = 5t/m^2, 10t/m^2, 15t/m^2, 20t/m^2, \\ \textbf{dan 25t/m^2} \end{array} \qquad \begin{array}{c} \gamma \text{sat} = \gamma t &= 1.9 \text{ t/m}^3 \\ \text{Slope} &= 1:2 \end{array}$ | Primary Consolidation - normally consolidated (NC-Soil) :<br>$Sc = \left[\frac{C_{c}}{1+e_{o}}\log\frac{P'_{o}+\Delta P}{P'_{o}}\right]H$ |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2 m<br>3 m | Medium<br>Very Soft                                                                                                                                                                                                                                         | $H_{initial} = \frac{q_{final} + Sc(\gamma_{embankment} - \gamma'_{embankment})}{\gamma_{embankment}}$ $H_{final} = H_{initial} - Sc$     |
| 5 m        | Soft                                                                                                                                                                                                                                                        | Secondary Compression (Ss) :<br>Ss = C $\alpha$ ' H log (t <sub>2</sub> /t <sub>1</sub> )<br>$t_1 = 0.5$ years, $t_2 = 25$ years          |
| 5 m        | Medium                                                                                                                                                                                                                                                      | where :<br>$C\alpha' = (0,0072 e_0 - 0.0067) P'$ or $C\alpha' = (0,0077 e_p - 0.0060) P'$                                                 |

#### Table 5. Soil Parameters

| Denth       |   |             |                     | Unit V              | Weight |     |        |       | C    | Atte   | Atterberg's Limit |       |       | Consolidation |                      |          |
|-------------|---|-------------|---------------------|---------------------|--------|-----|--------|-------|------|--------|-------------------|-------|-------|---------------|----------------------|----------|
| Depth       |   | Consistency | Gs                  | $\gamma_{sat}$      | Υd     |     | (%)    | е     |      | LL     | PL                | PI    | ( c   | Ca            | ( a                  | Cv       |
| (m) (m)     |   |             | (t/m <sup>3</sup> ) | (t/m <sup>3</sup> ) | (%)    | (%) |        | (KPa) | (%)  | (%)    | (%)               | LC    | CS    | Ca            | (cm <sup>2</sup> /s) |          |
| 0.0 - 2.0   | 2 | Medium      | 2.616               | 1.700               | 1.063  | 100 | 60     | 1.050 | 36.5 | 107.51 | 42.63             | 64.88 | 0.658 | 0.187         | 0.0191               | 0.000181 |
| 2.0 - 5.0   | 3 | Very Soft   | 2.616               | 1.426               | 0.705  | 100 | 102.25 | 1.380 | 6    | 107.51 | 42.63             | 64.88 | 0.763 | 0.203         | 0.0301               | 0.000108 |
| 5.0 - 10.0  | 5 | Soft        | 2.616               | 1.483               | 0.771  | 100 | 92.46  | 1.265 | 14.8 | 107.51 | 42.63             | 64.88 | 0.723 | 0.197         | 0.0284               | 0.000159 |
| 10.0 - 15.0 | 5 | Medium      | 2.616               | 1.700               | 1.063  | 100 | 60     | 1.050 | 36.5 | 107.51 | 42.63             | 64.88 | 0.658 | 0.187         | 0.0191               | 0.000181 |



Table 6. The value of  $H_{\text{initial}} \ dan \ H_{\text{final-field}}$ 

| <b>q</b> <sub>final1</sub> | <b>S</b> <sub>total</sub> | <b>q</b> <sub>final 2</sub> | Δq     | H <sub>initial(p+s)</sub> | H <sub>final(p+s)</sub> | H <sub>final-field</sub> |
|----------------------------|---------------------------|-----------------------------|--------|---------------------------|-------------------------|--------------------------|
| (t/m²)                     | (m)                       | (t/m²)                      | (t/m²) | (m)                       | (m)                     | (m)                      |
| 5                          | 2.33                      | 5.89                        | 0.89   | 4.31                      | 2.02                    | 1.55                     |
| 10                         | 3.52                      | 13.46                       | 3.46   | 8.93                      | 5.42                    | 3.60                     |
| 15                         | 4.40                      | 22.53                       | 7.53   | 14.19                     | 9.78                    | 5.82                     |
| 20                         | 5.13                      | 32.26                       | 12.26  | 19.48                     | 14.68                   | 8.23                     |
| 25                         | 5.76                      | 42.36                       | 17.36  | 24.60                     | 19.92                   | 10.78                    |



Fig. 8. The relationship between  $H_{finat-field}$  and  $H_{initial(p+s)}$ 

## CONCLUSION

- 1. Based on laboratory experimental studies and statistical analysis, there are empirical correlations between the secondary compression index (C $\alpha$ ') with the initial void ratio (e<sub>0</sub>), the void ratio at the end of primary consolidation (e<sub>p</sub>), and the effective consolidation stress (P').
- 2. Regression between  $C\alpha' e_0 P'$  and  $C\alpha' e_p P'$  shows a strong correlation between these parameters. Based on the linear regression, the relationship of  $C\alpha' e_0 P'$  has the coefficient of determination is R = 0.888, while for the relation  $C\alpha' e_p P'$  has R = 0.914. With a fairly high R value of close to 1, this empirical correlation can be used in predicting the secondary compression index. The correlations obtained from this study are as follows:

$$C\alpha' = (0.0072 \ e_0 - 0.0067) P'$$
 and  $C\alpha' = (0.0077 \ e_p - 0.006) P'$ 

where :  $C\alpha'$  is the secondary compression index,  $e_0$  is the initial void ratio,  $e_p$  is the void ratio at the end of primary consolidation, and P' is the effective consolidation stress which is the magnitude of the addition of stress due to the external load ( $\Delta P$ ), P' =  $\Delta P$ .

3. The value of the secondary compression index ( $C\alpha'$ ) is influenced by the effective consolidation stress (P'). The greater the effective consolidation stress (P') is, then the greater the secondary compression index ( $C\alpha'$ ) will become. So that the secondary compression can be removed along with preloading at the time of removal of the primary consolidation. Secondary compression can be removed by giving an extra load ( $\Delta q$ ) that causes additional compression to the primary consolidation where the magnitude equals to the expected secondary compression. Then, this  $\Delta q$  could be removed at the end of the primary consolidation. So that after soil improvement with preloading is completed, there is no more settlement caused by primary consolidation and secondary compression. The extra load ( $\Delta q$ ) during preloading will make the soil become more compressive such that increases undrained shear strength value (Cu). The increasing value of Cu causes the secondary compression index ( $C\alpha'$ ) to be smaller. So that the extra load ( $\Delta q$ ) at the time of preloading can eliminate the secondary compression at a certain time period.

## REFERENCES

- A. Alihudien, I. B. Mochtar, Usulan Perumusan Pemampatan Konsolidasi Sekunder untuk Tanah Lempung, "Pertemuan Ilmiah Tahunan XIII 2009 Himpunan Ahli Teknik Tanah Indonesia" Proceedings, Denpasar Bali, ISBN: 978-979-96668-7-1, (2009).
- B. M. Das, K. Sobhan, *Principles of Geotechnical Engineering 8<sup>th</sup> Edition*. SI, Global Engineering: Christopher M. Shortt, **381-389**, (2012).
- 3. C. C. Ladd, Settlement Analysis ff Cohesive Soils, Research Report R71-2. Cambridge, MA: MIT, (1994).
- 4. D. C. Koutsoftas, R. Foott, L. D. Handfelt, *Geotechnical Investigations Offshore Hong Kong*, J. Geotech. Engng. Div., ASCE 113, No. 2, 87-105, (1987).
- E. E. Alonso, A. Gens, A. Lloret, Precompression Design For Secondary Settlement Reduction, Geotechnique 50, No. 6, 645-656, (2000).
- G. Mesri, *Coeffisient of secondary Compression*, Journal of the Soil Mechanics and Foundations Divisions. Proc. ASCE Vol. 99 No. SM1, pp 123-137, (1973).
- 7. G. Mesri, M. A. Ajlouni, T. W. Feng, D. O. K. Lo, *Surcharging of Soft Ground to Reduce Secondary Settlement*, U.S.A, Republic of China, (1973).
- 8. I. B. Mochtar, *Empirical Parameters for Soft Soil in Situ*, Civil Engineering Department-ITS, (2006) and Revised (2012).
- 9. I. B. Mochtar, *Teknologi Perbaikan Tanah dan Alternatif Perencanaan pada Tanah Bermasalah (Problematic Soils)*, Civil Engineering Department-ITS, **126**, (2002).
- J. Chu, B. Indraratna, S. Yan, C. Rujikiatkamjorn, *Practical Considerations For Using Vertical Drains in Soil* Improvement Projects, Proceedings of the Institution of Civil Engineers: Ground Improvement, 167 (3), 173-185, (2014).
- K. P. Yu, R. P. Frizzi, Preloading Organic Soils To Limit Future Settlements. In Vertical And Horizontal Displacements Of Foundations And Embankments, ASCE Geotechnical Special Publication No. 40, Vol. 1, 476-490, (1994).

# Q and A?

## MATERIALS AND RESEARCH METHODS



## Soil parameters obtained from laboratory tests

|                                         |           | anneters |          |
|-----------------------------------------|-----------|----------|----------|
|                                         | Very Soft | Soft     | Medium   |
| $\gamma_{\rm sat}$ (g/cm <sup>3</sup> ) | 1.426     | 1.483    | 1.700    |
| $\gamma_{\rm d}  ({\rm g/cm^3})$        | 0.705     | 0.771    | 1.063    |
| e <sub>0</sub>                          | 1.380     | 1.265    | 1.050    |
| Wc (%)                                  | 102.25    | 92.46    | 60       |
| Gs                                      | 2.616     | 2.616    | 2.616    |
| Cu (kPa)                                | 6.0       | 14.8     | 36.5     |
| Atterberg Limits                        |           |          |          |
| LL (%)                                  | 107.51    | 107.51   | 107.51   |
| PL (%)                                  | 42.63     | 42.63    | 42.63    |
| PI (%)                                  | 64.88     | 64.88    | 64.88    |
| Consolidation                           |           |          |          |
| Cc                                      | 0.763     | 0.723    | 0.658    |
| Cs                                      | 0.203     | 0.197    | 0.187    |
| $C_v (cm^2/s)$                          | 0.000108  | 0.000159 | 0.000181 |
| Cα                                      | 0.0301    | 0.0284   | 0.0191   |

Table 3. Soil parameters

 $C\alpha' = (0.0072 e_0 - 0.0067) P'(eq.1)$  $C\alpha' = (0.0077 e_p - 0.006) P'(eq.2)$ 

The value of  $C\alpha'$  is influenced by the effective consolidation stress (P')

#### Mesri (1973), Koutsoftas et all (1987), Ladd (1994), Yu & Frizzy (1994)

The secondary compression is significantly reduced when soils are over consolidated to moderate levels, indicating that the use of preload is greater than the final embankment/structural load, this is an effective method of reducing secondary compression

#### Alonso, Gens, & Lloret (2000)

The secondary compression coefficient (C $\alpha$ ) decreased significantly with an increase in the over consolidation ratio (OCR), so pre-consolidation is an effective method of removing secondary compression

Secondary compression can be removed along with preloading at the time of removal of the primary consolidation. Secondary compression can be removed by giving an extra load ( $\Delta q$ ) that causes additional compression to the primary consolidation with the magnitude equals to the expected secondary compression. Then, this  $\Delta q$  could be removed at the end of the primary consolidation. So that after soil improvement with preloading is completed, there is no more settlement caused by primary consolidation and secondary compression.